Category Theory
Categories and Precategories
Precategory
Isomorphism
Homotopy Equivalence
Lemma
Identity to Isomorphism
Example
Category
Example
Lemma
Isomorphism to Identity
Lemma
Example (Preorder)
Example
Groupoid
Fundamental Pregroupoid
Homotopy Precategory of Types
Example
Functors and Transformations
Functor
Natural Transformation
Functor Precategory
Lemma
A natural transformation Ξ³ : F β G is an isomorphism in B^A if and only if each Ξ³_a is an isomorphism in B.
Theorem
Composite of functors
Definition
Composite of natural transformations and functors
Definition
Lemma
Lemma
Adjoint Functors/Adjunction
Functor F : A β B β is-left-adjoint
- G : B β A,
- Ξ· : 1_A β G F (unit),
- Ξ΅ : F G β 1_B (counit),
( e F) ( F Ξ·) = 1_F,( G Ξ΅) ( Ξ· G) = 1_G (triangle identities).
Equivalence
Definition
Lemma
Injective
'Faithful'.
Surjective
'Full'.
Split Essentially Surjective
Lemma
Essentially Surjective
Weak Equivalence
Lemma
Isomorphism
F is bijective and F_0 is an equivalence of types. A β B.