Linear Algebra
Linear Equation
Linear Space
Linear Subspace
Affine Space
Topological Linear Space
Normed Linear Space
(1 , 0 )-Tensor/Vector
Example
Basis
Example
Orthonormal Basis
Gram–Schmidt Process
Linear Map
Antilinear Map
Semilinear Map
2-Tensor/Matrix
Properties
Example
Vector-Matrix Multiplication
Left Vector Multiplication
Right Vector Multiplication
Matrix-Matrix Multiplication
Properties
∵
∵
∵
Matrix Exponential
Similarity
Column Matrix/Vector
Row Matrix/Vector
Transposition
Identity Matrix
Zero Matrix
Scalar Matrix
Diagonal
Properties
Symmetric Matrix
or
Properties
∵
Lemma
Antisymmetric/skew-symmetric
Lemma
Conjugate Transpose
Hermitian Matrix
Orthogonal Matrix
Normal Matrix
Unitary Matrix
Lower/Left Triangular Matrix
Upper/Right Triangular Matrix
Miner
Cofactor
Adjugate Matrix
Inverse Matrix
Generalised Inverse
Moore–Penrose Inverse
Trace
Properties
See also: tensor contraction.
Eigenvalues and Eigenvectors
Eigenspace
Jordan Normal Form
Levi-Civita Symbol
Alternatively
ε
Inner Product
Frobenius Inner Product
Exterior Product
Lemma
Outer Product
Example
Properties
∵
∵
∵
∵
Outer product of tensors satisfies:
Kronecker Product
Example
Properties
Elementwise Product
Also called Hadamard product.
Properties
Khatri–Rao Product
Example
Tracy–Singh Product
Determinant
Properties
Characteristic Polynomial
Rank
Matrix Decomposition
Eigendecomposition/Spectral Decomposition
Singular Value Decomposition
Dual Space
Transpose of a linear map
Linear Form
Integration
Bilinear Form
Antisymmetric Bilinear Form
Bilinear Map
Alternating Bilinear Map
Submatrix/block matrix
Change of Bases
Covariance and Contravariance
Minimal Polynomial
Cayley–Hamilton Theorem
Householder Transformation
Numerical Linear Algebra
QR Decomposition
Jacobian Matrix
Hessian Matrix
Covariance and Contravariance
Active and passive transformation
Covariant transformation
Gramian matrix
Vectorisation
vec
0 | ⋯ | ⋯ | ⋯ | ⋯ | ||||||
0 | ⋯ | 0 | ⋯ | ⋯ | 0 | ⋯ | 0 | |||
0 | ⋯ | 0 | 1 | ⋯ | 1 | ⋯ | ⋯ |